PHYSICAL REVIEW E

VOLUME 49, NUMBER 2

FEBRUARY 1994

Semiclassical analysis of traversal time through
Kac’s solution of the telegrapher’s equation

D. Mugnai, A. Ranfagni, and R. Ruggeri
Istituto di Ricerca sulle Onde Elettromagnetiche del Consiglio Nazionale delle Ricerche,
Via Panciatichi 64, 50127 Firenze, Italy

A. Agresti
Dipartimento di Fisica dell’Universitd di Firenze, Sezione Fisica Superiore, Via di S. Marta 3, 50139 Firenze, Italy
(Received 27 April 1993)

A path-integral solution of the telegrapher’s equation has been demonstrated to give a plausible
description of traversal time, for motions either above or below the top of the barrier, in connection
with microwave-simulation experiments [see Mugnai, Ranfagni, Ruggeri, and Agresti, Phys. Rev.
Lett. 68, 259 (1992)]. This Brief Report reports an extension of the analysis in order to compare
the traversal, or delay, time results relative to a beat envelope signal with those as deduced from
the distribution function of the randomized time and its analytical continuation in imaginary time.

PACS number(s): 03.40.Kf, 02.50.—r, 03.65.Sq

Since Kac’s [1] pioneering work, it has been well known
that the telegrapher’s equation is equivalent to a stochas-
tic motion where the jump rate is related to the dissipa-
tive parameter a in the following equation:
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v being the propagation velocity in the z direction of the
quantity F(x,t). Kac’s work has been recently reconsid-

ered [2] and it was demonstrated that the solution of Eq.
(1) can be expressed by the quadrature [3]

F(a,t) = / ~ (ad(a,r) + Bz, —r)] g(t, ) dr ,  (2)

where ¢(z,r) is a solution of the wave equation with-
out dissipation [Eq. (1) with ¢ = 0] and a and (3 are
arbitrary mixing coefficients so that a + 8 = 1. The
boundary conditions of Eq. (1) are F(z,0) = ¢(z,0) and
(0F/3t)1—0 = (a— 3)(0¢/8t)t=0. The two-variable func-
tion g(t,r) is the density distribution of a “randomized
time” which, according to a Laplace-transform analysis,
can be expressed, for -t < r <'t, as

g(t,r) = e~®t5(t — 1)
+%ae“"@(t — |r])[To(a(t® — r?)*/?)
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where §(t) and ©(t) are the Dirac function and the Heav-
iside step function, respectively, and Iy and I; are modi-
fied Bessel functions. The properties of the function (3)
are extensively discussed in Ref. [3]; here we recall just
some of them and in particular the asymptotic behavior
for t > r. Using the asymptotic expansions of the Bessel
functions [4],
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and the approximate relation (¢ +r)(t% — r2)~1/2 x e"/t,
we have that Eq. (3) can be expressed, neglecting the
é contribution, as the sum of two Gaussians. Thus, we
have

1 [a ar? ar? r
gt,r) = 2\ 27t [exp (——Z—t_) + exp (—g + t)] )

where the first Gaussian is centered at » = 0, the other
one at 7 = 1/a, with the tails cut at 7 = £t (see Fig. 1).
By means of Eq. (4) we account immediately for the fact
that the asymptotic value 1/2a of the average 7(t) is in
agreement with the complete calculation, which exactly
gives [3]
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FIG. 1. The contributions relative to Io and I, [second and
third terms in Eq. (3)] are computed as a function of r for
a =1 and t = 5. These can be approximated in the interval
—t < r <t as two nearly identical Gaussians normalized to
1/2, one centered at 7 = 0 and the other one at r ~ 1/a; see
Eq. (4). The first term in Eq. (3) is an attenuated & function,
centered at » = t, which for at > 1 becomes negligible.
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7(t) = /°° rg(t,r)dr = % (1—e72e) . (5)

— o0

Note that in the integration of Eq. (5) the contributing
terms of the distribution g(¢,r) are, for parity reasons,
only those in the following expression (0 < r < t):
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This function, by identifying r» with 7, is identical to the
density distribution of the first passage time [Eq. (6) in
Ref. [5] for ro = 0]. As a consequence, we have that the
average T

ri(t) = /0 r1 f(ry,t)dry = 51(‘1 (1—e2)

is coincident with the average 7(t) of Eq. (5). We wish
to recall that the same result of Eq. (5) was originally
obtained by Kac [1] evaluating the first moment p, (t) = 7
of the randomized time by the average
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where N(7) is a randomized variable with Poisson distri-
bution of intensity a. By computing the average in the
last term of relation (6) as a sum of all probabilities, Kac
simply obtained

<(_1)N(T)> —e 207 (7)

which substituted into Eq. (6) just gives Eq. (5). Note
that if we considered the amplitude of probability (indeed
of probability) we would obtain a special average (a sort
of transition element)

F(t) = /Ot \<(—1)N(T>>|l/2 dr = 2 (1—e)  (8)

which is formally identical to the one of Eq. (5) by sub-
stituting 2a — a.

The average time 7 (or 7) has to be interpreted as
the fictitious time it would take a particle to reach the
average distance L = vT if it was always moving with ve-
locity v without reversal. Accordingly, Eq. (5) [and Eq.
(8)] clearly accounts for the fact that dissipation con-
tinuously reduces the effective speed of the motion tend-
ing the average distance to the saturation value v/2a. By
multiplying by v and inverting Eq. (5) we have that the
average true time required to reach the distance L = v7
is given by

tz—lln(l—Zaé) (9)
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[the same result is obtained by Eq. (8) with the substitu-
tion 2a — a]. For a — 0, or (L/v) — 0, Eq. (9) correctly

gives the classical result ¢ = L /v, while for the saturation
value L = v/2a, t tends to infinity.

Let us now compare this result with the one obtained
by considering a simple signal function. In the case of a
single sinusoidal progressive wave of the type ¢(z,t) =
sin(z — vt) [6], Eq. (2) for o = 1 and 8 = 0 turns out to
be

— . v .
F(z,t) =e (smzcoswlt — — coszsinw;t
Wy

a .
+ —sma:smw1t> , (10)
w1y

where w; = vv? — a2 is an effective velocity, lower than
the velocity v in the absence of dissipation. By identify-
ing the v velocity with that of a beat envelope (beat or
group velocity), formed by a superposition of two waves
of sligtly different frequencies, it was possible to give a
reasonable description of experimental results of delay
time measured in guided propagation of electromagnetic
waves in the region of the cutoff frequency [7]. For v > a,
the delay (or traversal) time can be simply obtained as
the time ¢, taken for a node of the envelope function
[F(z,t) = 0] to travel a distance z = L from the relation
8.9]
wq tan L

tan(w; t1) = " atenl (11)
The behavior of ¢; vs the dissipative parameter a is rep-
resented in Fig. 2 and compared with the curve as given
by Eq. (9), taking a or 2a as an independent variable. We
note that the agreement is reasonable especially when the
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FIG. 2. Delay or traversal time relative to a barrier of uni-
tary length (L = 1) as a function of the dissipative parameter
a. The upper curves refer to a classically allowed motion with
initial velocity v = 0.1, the lower ones refer to a classically
forbidden motion with an initial imaginary velocity v = 0.1z.
Continuous lines refer (upper) to Eq. (11) and (lower) to Eq.
(12). Dashed lines refer (upper) to Eq. (9) and (lower) to Eq.
(14), taking 2a as an independent variable. The horizontal
line represents the delay in the absence of dissipation.
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independent variable is 2a. So we can conclude that the
predictions of delay time vs dissipation are described well
enough by both models [Egs. (9) and (11)] in the allowed
classical region.

Now we wish to investigate the behavior of delay
(or traversal) time for a classically forbidden region or
quantum-tunneling regime. According to an already
tested procedure [7,9], when the velocity v becomes imag-
inary (v? < 0) we consider the analytic continuation of
Eq. (10) in imaginary time (¢ & —it) and imaginary effec-
tive velocity wy; — iws = i4/|v|?2 + a2, since v — iv. In
this way the amplitude F(z,t) turns out to be a complex
quantity and the delay time can be obtained by equating
to zero the derivative of |F|? with respect to time, and
obtaining therefore the following relation [8,9]:

tan(2wsts) = % tan(2L) . (12)

The curve of t3 vs the dissipative parameter a, as de-
duced from Eq. (12), is also reported in Fig. 2. This
curve shows, in opposition to the classical behavior, a
characteristic decrease of the delay time with increasing
dissipation. This behavior, which has been demonstrated
to work in practical cases [7,9], seems to be peculiar of
the tunneling processes where (contrarily to the classi-
cally allowed region where dissipation tends to reduce
the motion speed) the effective imaginary velocity is in-
creased by dissipation.

We ask now if it is possible to compare the result as de-
duced from Eq. (12) with something like Eq. (9), deduced
from Eq. (3), in the tunneling case.

The distribution g(t,r) as well as the average effective
randomized time 7(t), Eq. (5), are direct consequences
of the stochastic model assumed for describing the effect
of losses. These assumptions lead, as previously antic-
ipated, to the intuitive result of a slowing down of the
motion. In the tunneling case we have just the opposite
behavior, but it is not easy to imagine the correspond-
ing motion model. The opposite behavior of the delay
vs dissipation suggests to us to consider as trial function
for 7(t) the inverse function of Eq. (5), namely (after
exchanging 7 and t)

e 2—1(; In(1 — 2at) (13)

and, for the special average 7, the inverse function of Eq.
(8). In this way the traversal (or tunneling) time would
be given—by multiplying by v, taking again L = v#, and
inverting Eq. (13)—by

; 1 (1 _ e—2aL/v) (14)
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[the same result is obtained by Eq. (8) with the substitu-
tion 2a — a]. The corresponding curve is also reported in
Fig. 2 and we note that (especially taking 2a as an inde-
pendent variable) the agreement with the curve deduced

from Eq. (12) is rather good, better than in the allowed-
motion case [comparing the curves relative to Egs. (9)
and (11) in Fig. 2].

This result, if not fortuitous, suggests that the crude
ansatz of Eq. (13) should have some more convincing
explanation. First, we note that Eq. (14) is nothing
but Eq. (5) with the substitution # — ¢ and vice versa
t - 7 = L/v. This means that, while for classically
allowed motions the effective space is L = v# and the
true time is ¢, in the tunneling case the effective space
is L = vt and the true time is 7, that is, the roles of
t and 7 are exactly exchanged when passing from classi-
cal to tunneling motions. This interchange of the time
variables t and r is compatible with the structure of the
distribution function g(¢,7) when we consider an analytic
continuation gac of the type

gac(t,r) < g(it,ir) . (15)

Looking at Eq. (3) we see that the argument of the mod-
ified Bessel functions exactly becomes a(r? —t2)!/2 (this
implies a trivial exchange of r and t) so that after a suit-
able change in the argument of the © function we have
that the asymptotic expression of g(it,ir) is given, for
r>t, by

a e—iatear at2>
it iry N = —— |exp | ——
glitin) ~ N W[ p( 2
2t
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2r T

where A is a suitable normalization factor. This expres-
sion allows us to obtain for the asymptotic absolute value
of the average time ¢ the following result:

~

i(r) = ' / = it g(it, ir) d(it) o~ 2—111 ar)
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in agreement with the asymptotic value of Eq. (14). A
more detailed analysis could allow us to obtain the com-
plete expression (14). Nevertheless, the essential issue
of this kind of operation is evidenced also by the above
simplified treatment.

What clearly emerges is the inverted role of dissipa-
tion that in tunneling processes acts as an “accelerator”
of the motion. This fact, which finds a natural interpre-
tation when dissipation is treated by a phenomenological
approach [10], is difficult to explain in connection to a
real stochastic motion—even in imaginary time—which
should result from the superposition of “undisturbed”
normal processes and “disturbed” ones, which in tunnel-
ing behave as accelerated processes. The implications of
this shortening of the tunneling time are ultimately con-
nected to superluminal transport properties which for the
tunneling have been theoretically predicted [11] and, in
special situations [12], experimentally verified [13-15].
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